Journal of Organometallic Chemistry, 236 (1982) C49-C52
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

THE FORMATION OF DIMETALLOCYCLES FROM REACTIONS OF ALKYNES WITH (η - $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}$; X-RAY STRUCTURE OF $\left[\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mu-\mathrm{CO})\left\{\mu-\eta^{2}, \eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}\right\}\right]$

KON S. DICKSON*, GARY S. EVANS, and GARY D. FALLON
Department of Chemistry, Monash University, Clayton, Victoria 3168 (Australia) (Received June 29th, 1982)

Summary

The complexes $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mu-\mathrm{CO})\left\{\mu-\eta^{2}, \eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{CRCR}\right\}$ are obtained from reactions between $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}$ and the alkynes $\mathrm{RC} \equiv \mathrm{CR}(\mathrm{R}=$ $\mathrm{CF}_{3}, \mathrm{CO}_{2} \mathrm{Me}$, or Ph) at $25^{\circ} \mathrm{C}$. The molecular geometry of the complex with $\mathrm{R}=$ CF_{3} has been established by X-ray diffraction; the bridging 'ene-one' unit adopts a $\mu-\eta^{2}, \eta^{2}$ conformation. Other complexes isolated from these reactions include $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Rh}\left(\mathrm{C}_{6} \mathrm{R}_{6}\right)\left(\mathrm{R}=\mathrm{CF}_{3}, \mathrm{CO}_{2} \mathrm{Me}\right),\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}\left(\mathrm{C}_{4} \mathrm{R}_{4}\right)(\mathrm{R}=$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right)$ and $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}\left(\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{R}_{2}\right)(\mathrm{R}=\mathrm{Ph})$. The reaction between $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}$ and $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{C} \equiv \mathrm{CC}_{6} \mathrm{~F}_{5}$ gives $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}\right)$. Mononuclear complexes such as $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right) \mathrm{Co}\left(\mathrm{C}_{4} \mathrm{R}_{4} \mathrm{CO}\right)$ are the major products isolated from reactions between $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Co}_{2}(\mathrm{CO})_{2}$ and alkynes at $25^{\circ} \mathrm{C}$.

Dimetallocycies can be formed by the condensation of unsaturated organic molecules (e.g. $\mathrm{RC} \equiv \mathrm{CR}$) with other substrates (e.g. $\mathrm{RC} \equiv \mathbf{C R}, \mathrm{CO}, \mathrm{CNR}$) on a dimetal centre. These ring systems have been implicated in a variety of catalytic processes [1, 2]. If the formation, rearrangement, and breaking of new $C-X$ bonds in these systems could be achieved under mild conditions, then a better understanding of the precise role of particular dimetallocycles might be developed. There have been some successes [3-6] in this area recently, and we now report further progress that emanates from our investigations of reactions between ($\left.\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}$ and alkynes at room temperature.

The major products isolated from the reactions between $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}$ and hexafluorobut-2-yne in acetone at $25^{\circ} \mathrm{C}$ are the tetrahapto-benzene complex (η - $\mathrm{C}_{5} \mathrm{Me}_{5}$) $\mathrm{Rh}\left\{\eta^{4}-\mathrm{C}_{6}\left(\mathrm{CF}_{3}\right)_{6}\right\}$ (ca. 20% yield) and an orange-red solid, $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mu-\mathrm{CO})\left\{\mathrm{C}(\mathrm{O}) \mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}\right\}$ (ca. 50% yield) (Found: $\mathrm{C}, 45.0 ; \mathrm{H}, 4.4$;
*To whom correspondence should be sent.
$\mathrm{F}, 16.1 . \mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{Rh}_{2}$ calcd.: $\mathrm{C}, 45.0 ; \mathrm{H}, 4.4 ; \mathrm{F}, 16.4 \%$). The infrared spectrum ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ soln.) of the latter complex reveals a bridging carbonyl ($\nu(\mathrm{CO})$ at $1819 \mathrm{vs} \mathrm{cm}^{-1}$) and a ketonic carbonyl ($\nu(\mathrm{CO})$ at $1717 \mathrm{vs}(\mathrm{sh})$ and $\left.1698 \mathrm{~s} \mathrm{~cm}{ }^{-1}\right)$. The NMR spectra (CDCl_{3} solutions) show inequivalent $\mathrm{C}_{5} \mathrm{Me}_{5}$ ($\delta(\mathrm{Me}$) at 1.88 and 1.81 ppm) and CF_{3} groups ($\delta 54.8(\mathrm{q})$ and $59.3(\mathrm{qd}) \mathrm{ppm}$). The precise geometry of this compiex has been determined by single crystal X-ray diffraction data.

Crystal data: $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{Rh}_{2}, M=694.36$, monoclinic, space group $P 2_{1} / n$, a 9.451(4), $b 15.287(5), c 18.821(8) \AA, \beta 98.66(5)^{\circ}, U 2688.2 \AA^{3}, D_{\mathrm{m}} 1.72(3)$, $D_{\mathrm{c}}(Z=4) 1.72 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1384, \mu 11.6 \mathrm{~cm}^{-1}$ for Mo- K_{α} radiation $(\lambda$ $0.7107 \AA$).

Single crystal X-ray diffraction data were collected out to a limit of $\theta 35^{\circ}$ with a Philips PW1100 X-ray diffractometer. For 9282 unique reflections [$I \geqslant 3 \sigma(I)] R$ is 0.066*.

A representation of the structure and some important bond parameters are given in Fig. 1. It is interesting that the $\mu-\eta^{2}, \eta^{2}$ conformation of the bridging unit-CR:CR•CO- is subtly different from that established for each of the reiated complexes $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}\left\{\mu-\eta^{1}, \eta^{1}-\mathrm{C}(\mathrm{O}) \mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}\right\}[6]$, $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ru}_{2}(\mathrm{CO})(\mu-\mathrm{CO})\left\{\mu-\eta^{1}, \eta^{3}-\mathrm{C}(\mathrm{O}) \mathrm{C}_{2} \mathrm{Ph}_{2}\right\}[4],\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{~W}_{2}(\mathrm{CO})_{4}\left\{\mu-\eta^{2}, \eta^{2}-\right.$ $\mathrm{C}(\mathrm{O}) \mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ \} [5].

An analogous complex $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mu-\mathrm{CO})\left\{\mu-\eta^{2}, \eta^{2}-\mathrm{C}(\mathrm{O}) \mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}\right\}$ is obtained in ca. 65% yield from the reaction between $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}$ and dimethyl acetylenedicarboxylate in acetone at $25^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 50.1 ; \mathrm{H}, 5.5$; mol. wt. ($M^{+}, m / e, 674$). $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{Rh}_{2}$ calcd.: $\mathrm{C}, 50.0 ; \mathrm{H}, 5.4 \%$; mol. wt. 674).

Fig. 1. Molecular structure of $\left[\left(\eta-C_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mu-C O)\left\{\mu-\eta^{2} \eta^{2}-C(O) C\left(C F_{3}\right) C\left(C F_{3}\right)\right\}\right.$. Bond lengths: Rh(1)-Rh(2) $2.687(1), \operatorname{Rh}(1)-C(1) 2.009(8), R h(1)-C(2) 2.167(9), P h(2)-C(1) 2.057(8)$, $\mathrm{Rh}(2) . .-C(2), \mathrm{Rh}(2)-C(3) 2.049(10), C(1)-C(2) 1.456(12) . C(2)-C(3) 1.415(13)$ A.

[^0]In the infrared spectrum (CHCl_{3} solution), $\nu(\mathrm{CO})$ are observed at 1813 vs and $1700 \mathrm{vs}(\mathrm{br}) \mathrm{cm}^{-1}$; the ${ }^{1} \mathrm{H}$ NMR spectrum shows resonances at $\delta 3.94(\mathrm{~s}, 3 \mathrm{H})$, $3.55(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 15 \mathrm{H})$, and $1.75(\mathrm{~s}, 15 \mathrm{H})$ ppm. Upon heating solutions of the complex to ca. $100^{\circ} \mathrm{C}$, there is considerable broadening of the pair of $\mathrm{CO}_{2} \mathrm{Me}$ resonances at $\delta 3.94$ and 3.55 ppm , and coalescence (at ca. $60^{\circ} \mathrm{C}$) of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ resonances at $\delta 1.81$ and 1.75 ppm . This indicates that the molecule is fluxional. Exchange of the $\mathrm{C}_{5} \mathrm{Me}_{5}$ environments could occur either by rupture of the metal-carbon (ketonic) or the carbon-carbon (ketonic) bond (cf. ref. 4 and 5), and measurement of the ${ }^{13} \mathrm{C}$ NMR spectrum is planned to determine which mechanism is involved. Minor products isolated from this reaction are the tetrahapto-benzene complex ($\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$) $\mathrm{Rh}\left[\eta^{4}-\mathrm{C}_{6}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{6}\right]$ (ca. 15% yield) and the binuclear metallodiene complex ($\left.\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}\left[\mathrm{C}_{4}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{4}\right]$ (ca. 6\% yield).

Again, an analogous product is obtained from the reaction of ($\left.\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}$ $(\mathrm{CO})_{2}$ and diphenylacetylene. The dark red solid ($\left.\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mu-\mathrm{CO})\left\{\mu-\eta^{2}, \eta^{2}-\right.$ $\left.\mathrm{C}(\mathrm{O}) \mathrm{C}_{2} \mathrm{Ph}_{2}\right\}$ is isolated in ca. 70% yield and has been characterized by elemental (Found: $\mathrm{C}, 60.9 ; \mathrm{H}, 5.7 . \mathrm{C}_{36} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Rh}_{2}$ calcd.: $\mathrm{C}, 60.9 ; \mathrm{H}, 5.7 \%$) and spectroscopic ($\nu(\mathrm{CO})$ at 1794 vs and $1667 \mathrm{vs} \mathrm{cm}^{-1}$ in the $\mathrm{IR} ; \delta(\mathrm{Me})$ at 1.52 and 1.48 in the ${ }^{1} \mathrm{H}$ NMR) analysis. Other products of different type are obtained also in this system. A dark red complex of formula ($\left.\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}\left\{\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{Ph}_{2}\right\}$ is isolated in ca. 12% yield (Found: $\mathrm{C}, 60.5 ; \mathrm{H}, 6.0 . \mathrm{C}_{35} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Rh}_{2}$ calcd.: $\mathrm{C}, 60.2$; $\mathrm{H}, 5.8 \%$). A parent ion at $m / e 698(3 \%)$ is observed in the mass spectrum of this complex, and there is a prominent peak at $m / e 654$ (68%) due to loss of CO_{2} from the parent. This and the other spectroscopic properties (IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$), $\nu(\mathrm{CO})$ at $1713 \mathrm{~m} \mathrm{~cm}{ }^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right), \delta(\mathrm{Me})$ at 1.67 and 1.52 ppm$)$ are consistent with a structure such as I.

(I)

(I)

A related mononuclear complex of formula ($\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$) $\mathrm{Rh}\left\{\mathrm{CO}_{2} \mathrm{C}_{4} \mathrm{Ph}_{4}\right\}$ has been obtained in ca. 6% yield (Found: $\mathrm{C}, 73.3 ; \mathrm{H}, 5.5 . \mathrm{C}_{39} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Rh}$ calcd.: C , $73.3 ; \mathrm{H}, 5.5 \%$). In the mass spectrum, prominent peaks are observed at 638 $(40 \%, P), 610(100 \%, P-C O)$, and $594\left(17 \%, P-\mathrm{CO}_{2}\right)$. There is a single $\delta(\mathrm{Me})$ at 1.44 ppm in the NMR spectrum, and $\nu(\mathrm{CO})$ is observed at $1694 \mathrm{~s} \mathrm{~cm}^{-1}$ in the
infrared spectrum. These results are consistent with a structure II. The incorporation of [O] in structures I and II is unusual (cf. ref. 7), and further work is needed to establish the source of the oxygen.

The reaction between $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}$ and decafluorodiphenylacetylene in acetone at $25^{\circ} \mathrm{C}$ gives ($\left.\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{C}_{2} \mathrm{C}_{6} \mathrm{~F}_{5}\right.$) (75% yield) (Found: $\mathrm{C}, 49.0 ; \mathrm{H}, 4.1$; $\mathrm{F}, 21.1 . \mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~F}_{10} \mathrm{O}_{2} \mathrm{Rh}_{2}$ calcd.: $\mathrm{C}, 48.6 ; \mathrm{H}, 3.4 ; \mathrm{F}, 21.3 \%$). The spectroscopic properties (e.g. $\nu(\mathrm{CO})$ at $1970 \mathrm{vs} \mathrm{cm}^{-1}$ in the IR and $\delta(\mathrm{Me})$ at 1.76(s) ppm in the NMR) are consistent with a $\mu-\eta^{1}$ attachment of the alkyne and a trans-arrangement of the terminal carbonyls as has been established [8] for $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})_{2}\left(\mathrm{CF}_{3} \mathrm{C}_{2} \mathrm{CF}_{3}\right)$. We have not been able to induce the complex to undergo transformation to $\left(\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Rh}_{2}(\mu-\mathrm{CO})\left\{\mathrm{COC}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}$.

Similar reactions between ($\left.\eta-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Co}_{2}(\mathrm{CO})_{2}$ and alkynes generally give mononuclear complexes such as ($\eta-\mathrm{C}_{5} \mathrm{Me}_{5}$) $\mathrm{Co}\left\{\mathrm{C}_{4}\left(\mathrm{CF}_{3}\right)_{4} \mathrm{CO}\right\}$ (79% yield).

Acknowledgement. We are grateful to the Australian Research Grants Scheme for a research grant (R.S.D.) and to Monash University for a Postgraduate Award (G.S.E.).

References

[^1]
[^0]: *Atomic coordinates for this work are available from the author.

[^1]: G. Wilke, Pure and Appl. Chem.. 50 (1978) 677.
 M.H. Chisholm and F.A. Cotton, Accts. Chem. Res., 11 (1978) 356.

 3 S.A.R. Knox, R.F.D. Stansfield, F.G.A. Stone, M.J. Winter, and P. Woodward, Chem. Commun., (1978) 221.

 4 A.F. Dyke, S.A.R. Knox, P.J. Naish, and G.E. Taylor, Chem. Commun., (1980) 409.
 5 S.R. Finnimore, S.A.R. Knox, and G.E. Taylor, Chem. Commun., (1980) 411.
 6 R.S. Dickson, B.M. Gatehouse, M.C. Nesbit, and G.N. Pain, J. Organometal. Chem., 215 (1981) 97.
 7 W.C. Trogler and J.A. Tbers, Organomet. 1 (1982) 536, and ref. therein.
 8 R.S. Dickson, S.H. Johnson, H.P. Kirsch, and D.J. Lloyd, Acta Cryst., B, 33 (1977) 2057.

